Security Audit - Marinade Liquid Staking

conducted by Neodyme AG

Lead Auditor: Jasper Slusallek
Second Auditor: Simon Klier

Administrative Lead: Thomas Lambertz

October 21 2023

Security Audit - Marinade Liquid Staking

Table of Contents

1 Executive Summary 4
2 Introduction 5
Summaryof Findings e e e e 5
3 Scope 6
4 Project Overview 7
Functionality e e e e e e 7
On-ChainDataand Accounts 0 o i i e e 8
Instructions e e e e e e e 9
Authority Structure and Off-Chain Components 12
5 Findings 16
[ND-MARO1-L0O-01] Depositor May Gain 1 Extra mSOL-Lamportin SomeCases 17
[ND-MARO1-L0O-02] Auto-Adding of Validators in Stake Account Deposit is DOSable . . . 19
[ND-MARO1-L0-03] Malicious Stake Account Depositing May Exhaust Stake List or Val-
idator Lists e e e e 20
[ND-MAR@1-L0O-04] Duplication Flag Can Be Revived When Removing Validator 21
[ND-MARG1-LO-05] Possibility to DOS Cranker’s StakeReserve Calls via Frontrunning . . 22
[ND-MARO1-IN-01] Attacker Can Use Up Extra Stake-Delta Runs Immediately 23
[ND-MARO®1-IN-02] No Anchor-Init for Ticket Account 24
[ND-MARO1-IN-03] Possibility to Initialize with Invalid Parameters 25
[ND-MARG1-IN-04] Withdraw FeesRoundDown 26
[ND-MARO1-IN-05] Stake System Can Contain Unmergeable Transient Stake Accounts . 27
[ND-MARO1-IN-06] Possibility to Create Stake Accounts With Less Than min_stake Stake 28
[ND-MARG1-IN-07] Data Accounts and State Aren’t Checked to be Distinct at Initialization 29
[ND-MARG1-IN-08] Data Accounts Size Unchecked at Initialization 30
[ND-MARO1-IN-09] Multiple State Accounts 31
6 Discussion of Economic Attack Vectors 32
Validator Commission Attack L 32
Attacks Relatedto Rewards 32
Attacks Related to Slashing 33
Appendices

2/38

Security Audit - Marinade Liquid Staking

A About Neodyme 35
B Methodology 36
C Vulnerability Severity Rating 37

3/38

Security Audit - Marinade Liquid Staking

Executive Summary

Neodyme audited Marinade’s on-chain liquid Solana staking program during August 2023.

Due to the complex threat model for staking contracts, the scope of this audit included both imple-
mentation security and an economic analysis. The auditors found that Marinade’s staking program
comprised a clean design and far-above-standard code quality. According to Neodymes Rating Clas-
sification, no vulnerabilities above low-severity were found. The number of findings identified
throughout the audit, grouped by severity, can be seen in Figure 1.

Critical | O
> High O
@ Medium | O
>
(]
Informational 9

Number of Findings

Figure 1: Overview of Findings

The auditors reported all findings to the Marinade developers, who addressed them promptly. The
security fixes were verified for completeness by Neodyme. In addition to these findings, Neodyme
delivered the Marinade team a list of nit-picks and additional notes that are not part of this report.

4/38

Security Audit - Marinade Liquid Staking

Introduction

During the Summer of 2023, Marinade engaged Neodyme to do a detailed security analysis of their
on-chain liquid Solana staking program. Two senior security researchers from Neodyme, Simon Klier
and Jasper Slusallek, conducted independent full audits of the contract between the 21st of August
and the 4th of September 2023. Both auditors have a long track record of finding critical and other
vulnerabilities in Solana programs, as well as in Solana’s core code itself, and have extensive knowledge
about the intricacies of Solana’s stake program, which Marinade interacts with.

The audit focused on the contract’s technical security, as well as possible economic attacks. In the
following sections, we present our findings and discuss worst-case scenarios for authority compromise,
discuss economic attack patterns, and provide some general notes for considerations that may be
useful in the future.

Neodyme would like to emphasize the high quality of Marinade’s work. Marinade’s team always
responded quickly and competent to findings of any kind. Their in-depth knowledge of liquid-staking
programs was apparent during all stages of the cooperation, including excellent and crucial knowledge
of Solana’s stake program. Evidently, Marinade invested significant effort and resources into their
product’s security. Some technical debt was apparent in the contract, but only to a minor extent. Their
code quality is far above standard, as the code is well documented, naming schemes are clear, and
the overall architecture of the program is clean and coherent. The contract’s source code has no
unnecessary dependencies, relying mainly on the well-established Anchor framework.

Summary of Findings

We are happy to confirm that no issues above low severity were found. All found issues were quickly
remediated. In total, the audit revealed:

0 critical « 0 high-severity « 0 medium-severity « 5 low-severity « 9 informational

issues. In our opinion, the most significant current risks to Marinade users are the effects of bugs being
introduced into Solana’s stake program, or the effects of a manager authority compromise. Due to
safeguards implemented by Marinade, the latter would in all likelihood only result in a partial loss
of rewards for an epoch. We further discuss all authorities in the section on the contract’s authority

structure.

5/38

https://marinade.finance/
https://neodyme.io

Security Audit - Marinade Liquid Staking

Scope

The contract audit’s scope comprised of three major components:

« Primarily, the Implementation security of the contract’s source code
« Additionally, security of the overall design
+ Additionally, resilience against economical attacks

Neodyme considers the source code, located at https://github.com/marinade-finance/liquid-staking-
program/tree/main/programs/marinade-finance, in scope for this audit. Third-party dependencies
are not in scope. Marinade only relies on the Anchor library, the spl-token program and bincode, all of
which are well-established. During the audit, minor changes and fixes were made by Marinade, which
the auditors also reviewed in-depth.

Relevant source code revisions are:

« 4b5a6¢c60016ddefd11267552531f5269b557221bd « Start of the audit
e 1bd5133d3198c0af05a0952d1lca8cdOdlel9fad6 « Last reviewed revision

Note that as part of the audit, we also decided to re-review parts of Solana’s Stake Program, as well as
do a cursory review of Marinade’s off-chain cranker bot. One of the findings is related to this cranker
bot. However, we do not consider them in-scope for this audit.

6/38

https://github.com/marinade-finance/liquid-staking-program/tree/main/programs/marinade-finance
https://github.com/marinade-finance/liquid-staking-program/tree/main/programs/marinade-finance

Security Audit - Marinade Liquid Staking

Project Overview

This section briefly outlines Marinade’s functionality, design, and architecture, followed by a detailed
discussion of all related authorities.

Functionality

Marinade provides a liquid staking solution on Solana, where deposited SOL is staked to a curated
list of validators. Users can deposit SOL tokens or existing stake accounts and receive mSOL tokens
in return, representing their share of the staking pool. Tokens from the pool are then staked to a
manager-controlled list of validators according to a score-based distribution, such that they earn
staking rewards. These rewards flow back into the staking pool, contributing to the price appreciation
of mSOL.

The user can decide to swap their mSOL back to SOL at any time. Apart from swapping on the open
market, they have three options:

« Immediately swap the tokens via the in-built SOL-mSOL liquidity pool of Marinade, hence imme-
diately obtaining liquid SOL.

+ Burn their mSOL for a delayed-unstaking ticket, which they can claim against liquid SOL after
enough time has passed to allow for the corresponding amount of stake to be deactivated and
cool down.

« Burn their mSOL in return for an active staking account being transferred to them.

All methods of withdrawing have fees attached. For the latter two options, this is needed to prevent
economic attacks, which we discuss later on in this report.

To enable liquid unstaking and maintain as much liquid SOL in the in-built SOL-mSOL liquidity pool as
possible, Marinade relies on two mechanisms:

« When depositing SOL, users do not necessarily receive newly-minted mSOL. Instead, the contract
first tries to do a feeless trade using the liquidity pool, and only when the SOL side of the pool is
depleted does it start minting new mSOL. The swap price is determined by the contract’s internal
mSOL-SOL price, which slowly rises as staking rewards accumulate.

« Marinade also provides an LP mechanism. Liquidity providers can deposit SOL into the pool in
exchange for LP tokens, which they can later burn for a proportional share of both sides of the
pool. Liquid providers don’t profit from the feeless SOL-to-mSOL-trades mentioned above, but
they receive 50% of all liquid unstaking fees (with the current on-chain configuration). Liquidity
providers do not face the impermanent loss issues encountered in traditional liquidity pools.

7/38

Security Audit - Marinade Liquid Staking

Marinade also maintains an off-chain cranker bot, which keeps the total Marinade stake in line with
user deposits and withdrawals, and keeps the total stake of each validator proportional to its score.
The appropriate staking operations are performed in a so-called stake-delta window toward the end of
an epoch.

On-Chain Data and Accounts

The on-chain liquid staking contract needs to keep track of a potentially large amount of data, includ-
ing:

« configuration parameters (e.g., parameters that constrain certain actions or authority addresses),
+ up-to-date accounting values summarizing the contract’s funds,

« information on all validators in the curated set,

« information on all stake accounts managed by the Marinade instance,

« the state of the liquidity pool, and

+ all pending delayed-unstake tickets.

This data is represented on-chain as follows.

An instance of the Marinade protocol has a State account, which stores almost all of this information
except for:

A list of stake accounts managed by the Marinade instance, as well as some metadata attached
to them. This list is stored in a separate account whose address is referenced in the main state
account.

» The curated list of validators and their scores, as well as other metadata such as their total active
Marinade stake. This is also stored in a separate list account whose address is again referenced
in the main state account.

+ Aduplication flag PDA for each validator in the validator list, which prevents re-adding a validator
to the list.

« Information on each of the delayed-unstake tickets that are currently open. Each ticket is tracked

in a separate contract-owned account and is tied to the instance’s state address.

Any PDAs of the Marinade instance are bound to their respective state account’s address via derivation
seeds. Of those, the following are maintained as authority PDAs:

mSOL Mint Authority spl-token mint authority of mSOL

LP Mint Authority spl-token mint authority of LP tokens

Stake Deposit Authority set as the delegate authority on all Marinade-controlled stake accounts
Stake Withdraw Authority set as the withdraw authority on all Marinade-controlled stake accounts

8/38

Security Audit - Marinade Liquid Staking

mSOL leg Authority spl-token owner of the mSOL token account containing the liquidity pool’s mSOL
Finally, the contract’s funds are stored in the following accounts:

+ Marinade-controlled stake accounts, containing all activating / active / deactivating / deactivated
but not-yet-withdrawn stake in SOL

+ the reserve PDA, containing all not-yet-staked or ready-for-withdrawal SOL

the SOL leg PDA, containing the liquidity pool’s SOL side

the mSOL leg token account, containing the liquidity pool’s mSOL side

All contract fees go either into the reserve PDA and contribute to mSOL price appreciation, or are
sent/minted to the mSOL treasury, which is an external mSOL token account. Furthermore, the cranker
bot maintains an external operational SOL account, which is used for rent in new stake accounts and
duplication flag accounts. This rent is returned to the bot upon closing of those accounts.

Instructions

The contract has a total of 26 instructions, which we briefly summarize here.

Instruction Category Summary

Initialize Permissionless Initializes a new Marinade instance with a new state
account, validator list account and stake list account
using the parameters given to it

ChangeAuthority Admin-Only If specified, changes any contract-stored authority
addresses, as well as the address of the treasury and
the operational SOL account

ConfigLP Admin-Only If specified, changes any of the liquidity pool’s fee
parameters

ConfigMarinade Admin-Only If specified, changes the Marinade instance’s fee

parameters, stake-delta window length, feature flags,
and some constraints on stake account size, total
funds managed or user position delta per instruction

ConfigValidatorSystem Admin-Only Changes the number of additional stake-delta runs

allowed
Pause / Unpause PauseAuthority- Disables or Reenables all instructions which aren’t
Only admin-only instructions or Unpause

9/38

Security Audit - Marinade Liquid Staking

Instruction

AddValidator

RemoveValidator

SetValidatorScore

EmergencyUnstake

PartialUnstake

AddLiquidity

Removeliquidity

LiquidUnstake

Deposit

DepositStakeAccount

Category

Manager-Only

Manager-Only

Manager-Only
Manager-Only

Manager-Only

Liquidity Provider

Liquidity Provider

User

User

User

Summary

Adds a new validator record to the validator list and
creates the accompanying duplication flag account

Removes a validator record from the validator list
and closes the accompanying duplication flag
account

Changes the score of a validator

Unstakes a stake account from a validator whose
score has been set to 0 and sets its status as
emergency cooling down

Unstakes (part of) a stake account from an
overstaked validator and sets its status as emergency
cooling down

Liquidity provider (permissionless) deposits SOL into
the liquidity pool’s SOL side and receives a
proportional share of newly minted LP tokens

Liquidity provider burns their LP tokens in exchange
for a proportional share of both the SOL and mSOL
sides of the liquidity pool

User swaps mSOL for liquid SOL via the liquidity
pool; fees are levied in mSOL and are split among the
pool’s mSOL side and the treasury

User deposits SOL and receives a proportional
amount of mSOL; this is first done via a feeless
liquidity pool swap, and only when the liquidity pool
is out of mSOL are new mSOL minted

User deposits active stake account and receives a
proportional amount of newly minted mSOL; stake
account must be staked to curated validator, unless
the validator system currently allows auto-adding of
validators, in which case the corresponding validator
record is added to the validator list and the
accompanying duplication flag created

10/38

Security Audit - Marinade Liquid Staking

Instruction Category
OrderUnstake User
Claim User

WithdrawStakeAccount User

UpdateActive Crank

UpdateDeactivated Crank

StakeReserve Crank

DeactivateStake Crank

Summary

User burns mSOL in exchange for a delayed-unstake
ticket which they may exchange for liquid SOL after
some time; amount of SOL they receive is calculated
from the contract’s mSOL-to-SOL rate at time of
ticket creation; fee is applied to the amount of liquid
SOL the user receives from the reserve and
contributes to mSOL price appreciation

User hands in their delayed-unstake ticket after it has
matured, and receives the corresponding amount of
SOL

User burns mSOL in exchange for control of a stake
account which split from one of the
Marinade-controlled stake accounts; fees are levied
in mSOL and sent to the treasury

Updates an active stake account by withdrawing any
superfluous lamports from it (which may for example
come from MEV revenue sharing validators) and
calculating stake rewards since last update; all funds
received in either way are subject to a fee, which is
levied by minting mSOL to the treasury

Updates a fully deactivated stake account by
withdrawing all lamports to the reserve; rent is
forwarded to the operational SOL account; for any
rewards or other funds that have come in since the
last update, apply a fee to them by minting mSOL to
the treasury

Stakes some of the reserve to a validator who,
according to the current score distribution, is
understaked; new stake account is added to the
stake list

Deactivates all or part of a stake account from an
overstaked validator, splitting the stake account if
needed

11/38

Security Audit - Marinade Liquid Staking

Instruction Category Summary

Redelegate Crank Redelegate all or part of a stake account from an
overstaked validator to an understaked validator; if
needed, splits the old stake account and adds the
new one to the stake list

MergeStakes Crank Merges two stake accounts that are delegated to the
same validator; old stake account is removed from
the stake list

Note that while cranker instructions are permissionless, there is no incentive reward for executing
them.

Authority Structure and Off-Chain Components

In Marinade, there are four privileged authorities: The upgrade authority, the admin authority, the
pause authority, and the manager authority. Marinade also maintains an off-chain cranking infrastruc-
ture, which periodically calls the permissionless cranking instructions of the contract to maintain its
operation. Each of these entities has different powers, and the potential effects of each of them being
abused are very different.

It is apparent that Marinade has put considerable thought into the security of these authorities. The
two authorities that can cause the most damage - the upgrade and admin authority - are operated via
multisigs.

In this section, we discuss what powers each of the authorities has, and what the worst-case effect of a
compromise of each of them would be.

Upgrade Authority

As with any contract, the upgrade authority has complete control over the program and the funds it
controls. It is hence one of the most critical components of the security of the protocol. By maliciously
upgrading the contract, the upgrade authority can irreversibly transfer control of all funds in the
reserve, in the liquidity pool, and in all stake accounts to itself or other parties.

Marinade is aware of this and has put considerable effort into making the upgrade authority safe.
They have established a robust 6-out-of-13 multisig as its upgrade authority. The on-chain multisig
is managed by a non-upgradable deployment of Coral Multisig (formerly Serum Multisig) and can be

12/38

Security Audit - Marinade Liquid Staking

viewed here. Marinade states that the addresses belonging to this multisig are owned by: Marinade
team members (3 votes), Jupiter, Mango, Miton C, Orca, Phantom, Raydium, Solend, Solflare, Staking
Facilities and Triton.One. We independently verified this with Jupiter, Mango, Orca, Raydium, Solend,
Solflare, Staking Facilities and Triton.One.

Since the multisig members are well-established ecosystem members with good reputation, the
likelihood of a collusion between them can be seen as extremely low.

Admin Authority

Marinade’s admin authority is set to a governance of the Marinade DAO, specifically the “Marinade
Liquid Staking Admin Authority Wallet” here. This can be verified in the main state account data here.
The realms instance has a 4-out-of-7 council consisting of Marinade team members. Under normal
conditions, this council does all admin operations.

The admin authority has the power to set many contract parameters, including fee percentages, as
well as change the address to which fees and account rent funds are sent. They can also change the
addresses of lower authorities, i.e., the manager and the pause authority.

There are multiple attacks which a compromised admin authority would be able to do:

Cause a bank run and profit from high withdrawal fees. By setting the treasury address to them-
selves, they will receive all fees from stake account withdrawals, as well as part of the fees for
liquidity pool swaps. They can also set these fees up to the contract’s hardcoded maximums,
resulting in them getting 0.2% of all stake account withdrawals and roughly 7.5% of all liquidity
pool swaps (by setting the LP’s liquidity target to u64: : MAX, the LP’s maximum fee to 10% and
the treasury cut to 75%). They can then cause a bank run on Marinade, e.g., by publicizing that
the admin authority has been compromised. Presumably, a non-negligible percentage of users
will exit their funds via the liquidity pool or via withdrawing stake accounts before the upgrade
authority multisig can react, meaning the attacker will receive considerable profit from fees.

Steal an epoch or more of staking rewards. By changingthe manager authority to themselves, they
can add their own validator, reconfigure score parameters and shift most or all Marinade-control
stake to their validator. That validator can have 100% staking fees. By changing the pause
authority and pausing the contract, they can prevent users from withdrawing that stake. Note
that they themselves are not subject to pausing, since they can do any of their non-admin
operations in a transaction that is sandwiched by an unpause and a pause operation. This can
only be resolved by the upgrade authority. By timing the attack in the last minutes of an epoch,
the attacker is guaranteed to steal at least one epoch of staking rewards.

Grief the chain using a high-staked validator Using the attack pattern above, they now also control
a validator with a large amount of stake. Since they will presumably only have this stake for

13/38

https://explorer.solana.com/address/magrsHFQxkkioAy45VWnZnFBBdKVdy2ZiRoRGYT9Wed/anchor-account
https://explorer.solana.com/address/42VJbDihcS81YJPbuhHnHgvo1ehu42j8VK9sNwrnAarR
https://app.realms.today/dao/MNDE/params
https://explorer.solana.com/address/8szGkuLTAux9XMgZ2vtY39jVSowEcpBfFfD8hXSEqdGC/anchor-account

Security Audit - Marinade Liquid Staking

one epoch and will lose it afterward, no matter what, they have no reason not to misbehave.
However, as long as the fraction of stake Marinade controls is not much more than it currently
does, this only has a very limited effect. For example, they would get leader slots, in which they
could refuse to process transactions. In the very unlikely event that Marinade stake pushes them
over 1/3 of the global stake, they could completely DOS the chain.

Grief other stakers by hitting global activation and deactivation limits In the event that the addi-
tion of the Marinade stake makes an attacker control more than the global stake activation limit,
they could annoy other stakers by redelegating all of it. As a result, all stake accounts that are
(de)activating in that epoch would only be partially (de)activated. However, this is - at best -
only a nuisance.

Note that all fee parameters the admin controls are subject to strict hardcoded maxima. One of the
main revenue streams of the protocol, the fee on staking rewards, is capped at 10% (with the on-chain
config currently set to 6%).

Pause Authority

The pause authority has exactly one ability, which is to pause and unpause the contract. It can effectively
DOS the contract and lock user funds into the contract, but only until the admin authority replaces
it.

The pause authority was recently introduced and is not yet deployed on-chain. Marinade states that
the authority will be a dedicated Security Council of people who can review exploit disclosures and
react accordingly. They stated that its members will be appointed by MNDE holder votes.

Manager Authority

The manager authority has the power to add and remove validators, as well as to change the score of all
validators. However, Marinade implemented a limit on the maximum amount of stake that a manager
can move in one epoch (see PR #70). Even if a manager turns malicious, it could only steal a portion of
an epoch’s staking rewards via malicious stake redistribution. The same applies to the griefing and
activation limit-attacks described for the admin authority. Both also have a more limited impact due to
the stake movement limit. Note that the manager cannot prevent users from withdrawing by pausing
the contract.

Currently, the manager authority seems to be a hot wallet.

14/38

https://github.com/marinade-finance/liquid-staking-program/pull/70

Security Audit - Marinade Liquid Staking

Cranker Bot

Marinade maintains an off-chain bot that periodically calls the contract’s crank instructions in the
relevant time windows. These crank instructions are permissionless, but like with many decentralized
applications, the team-maintained cranker is currently the only active cranker.

If the bot were compromised, the worst effect that should result is that staking and unstaking of
newly deposited or newly ordered-to-unstake funds is delayed by an epoch. Hence staking rewards or
withdraw liquidity may be affected in a very limited way.

15/38

Security Audit - Marinade Liquid Staking

Findings

This section outlines all of our findings. They are classified into one of five severity levels, detailed in
Appendix C. In addition to these findings, Neodyme delivered the Marinade team a list of nit-picks and

additional notes which are not part of this report.

All findings are listed in Table 2 and further described in the following sections.

Table 2: Findings

Identifier Name Severity State

ND-MARO1-LO-01 Depositor May Gain 1 Extra mSOL-Lamport in Some Low Resolved
Cases

ND-MARO1-LO-02 Auto-Adding of Validators in Stake Account Deposit is Low Resolved
DOSable

ND-MARO1-L0O-03 Malicious Stake Account Depositing May Exhaust Stake Low Resolved
List or Validator List

ND-MARO1-LO-04 Duplication Flag Can Be Revived When Removing Low Resolved
Validator

ND-MARG1-LO-05 Possibility to DOS Cranker’s StakeReserve Calls via Low Resolved
Frontrunning

ND-MARO1-IN-01 Attacker Can Use Up Extra Stake-Delta Runs Immediately Info Acknowl.

ND-MARO1-IN-02 No Anchor-Init for Ticket Account Info Acknowl.

ND-MARO1-IN-03 Possibility to Initialize with Invalid Parameters Info Resolved

ND-MARO1-IN-04 Withdraw Fees Round Down Info Acknowl.

ND-MARO1-IN-O5 Stake System Can Contain Unmergeable Transient Stake Info Acknowl.
Accounts

ND-MARO1-IN-06 Possibility to Create Stake Accounts With Less Than Info Resolved
min_stake Stake

ND-MARO1-IN-07 DataAccountsand State Aren’t Checked to be Distinctat Info Resolved
Initialization

ND-MARO1-IN-08 DataAccounts Size Unchecked at Initialization Info Resolved

ND-MARO1-IN-09 Multiple State Accounts Info Acknowl.

16/38

Security Audit - Marinade Liquid Staking

[ND-MARO1-LO-01] Depositor May Gain 1 ExtramSOL-Lamportin Some
Cases

Severity Impact Affected Component Status

Low Loss of funds in extremely unlikely cases Deposit instruction Resolved

In the deposit instruction, the contract in one specific case implicitly rounds up in the calculation of
how much mSOL the user receives in one of the cases.

Denote:

L =the amount of input lamports

B =the mSOL-lamport balance in the liquidity pool’s mSOL leg
S =the total mSOL supply
T = the total virtual staked lamport balance

If we used real-numbered values, the “correct” behavior would be: The depositor pays L SOL-lamports
and gets 29 = L - S/T mSOL-lamports. This is exactly the contract’s current SOL-to-mSOL rate,
multiplied by the amount of input lamports. However, the contract uses integers, which round down
during division.

In the deposit instruction, the case where you only swap or only mint is fine since, in both cases, you
pay L SOL-lamports and get | (LS) /T | mSOL-lamports which, due to the round-down operation, is
slightly worse than xy. However, the case where you both swap and mint - because you get more
mSOL than there is in the liquidity pool mSOL leg - implicitly rounds up, meaning you can get a slightly
better rate than you should.

Constraints for the latter case to occurare | (LS)/T'| > B and B > 0 (and obviously L, S,T" > 0). In
this case, the depositor gets the entirety of the liquidity pool’s mSOL balance. The lamport value of
that is then subtracted from the number of lamports the user deposits, and the remaining lamports
are converted to mSOL again and freshly minted to the user. Overall, the user pays L SOL-lamports
andgetszy =B+ [((L— [(B-T)/S])-S)/T| mSOL-lamports.

We canrewritex; =B+ |[(L-S—((B-T)—(B-T)mod S))/T| =|(L-S+ (B-T)mod S)/T|.
It’s easy to see that there are ways to achieve x; > zy. Takee.g. T = 1499, S = 1000, L. = 5, B = 2.
We get 21 = 4 mSOL-lamports, even though we should have gotten z¢ = 3.336.

Note that at best, we can steal z; — zp < (BT mod S)/T < S/T mSOL-lamports. During normal
operation we have S < T, so in that case it is limited to stealing at most 1 mSOL-lamport. With

17/38

Security Audit - Marinade Liquid Staking

transaction fees, mSOL would have to be worth a factor of several thousand over SOL for this to be
profitable. Furthermore, note that a high min_deposit may disincentivize this attack.

Note thatif S < T'isviolated, e.g. due to a slashing event, more than one mSOL-lamport can potentially
be stolen.

We recommended not allowing this implicit rounding-up.

Relevant code: https://github.com/marinade-finance/liquid-staking-program/blob/4b5a6c60016dd
efd1126755253f5269b557221bd/programs/marinade-finance/src/instructions/user/deposit.rs#L1
90

Resolution

Marinade first implemented a fix by adding one to the amount of lamports that are swapped. We
verified the fix: this change means the usernow getsz; = B+ ((L— ((B-T)//S+1))-5)//T =
(L-S+(B-T) mod S—S)//T,whichis always guaranteed to be less than orequaltozg = (L-S)/T.

This fix was proposed for merging in Marinade PR #67.

Another fix was later merged from PR #69. It fixes the issue by only computing the mSOL buy amount
once and subtracting the swap amount from it. This prevents the implicit rounding-up behavior seen
before.

18/38

https://github.com/marinade-finance/liquid-staking-program/blob/4b5a6c60016ddefd1126755253f5269b557221bd/programs/marinade-finance/src/instructions/user/deposit.rs#L190
https://github.com/marinade-finance/liquid-staking-program/blob/4b5a6c60016ddefd1126755253f5269b557221bd/programs/marinade-finance/src/instructions/user/deposit.rs#L190
https://github.com/marinade-finance/liquid-staking-program/blob/4b5a6c60016ddefd1126755253f5269b557221bd/programs/marinade-finance/src/instructions/user/deposit.rs#L190
https://github.com/marinade-finance/liquid-staking-program/pull/67
https://github.com/marinade-finance/liquid-staking-program/pull/69

Security Audit - Marinade Liquid Staking

[ND-MARO1-L0-02] Auto-Adding of Validators in Stake Account Deposit
is DOSable

Severity Impact Affected Component Status

Low Minor DOS DepositStakeAccount instruction Resolved

In DepositStakeAccount, the program creates the duplication flag using system_instruction::
create_account. This fails if the account already has lamports, meaning an attacker can prevent it
by sending lamports to this account beforehand.

Relevant code: https://github.com/marinade-finance/liquid-staking-program/blob/4b5a6¢60016dd
efd1126755253f5269b557221bd/programs/marinade-finance/src/instructions/user/deposit_stake
_account.rs#L185

Resolution

Marinade resolved this issue by deprecating the auto-add-validator feature in PR #68.

19/38

https://github.com/marinade-finance/liquid-staking-program/blob/4b5a6c60016ddefd1126755253f5269b557221bd/programs/marinade-finance/src/instructions/user/deposit_stake_account.rs#L185
https://github.com/marinade-finance/liquid-staking-program/blob/4b5a6c60016ddefd1126755253f5269b557221bd/programs/marinade-finance/src/instructions/user/deposit_stake_account.rs#L185
https://github.com/marinade-finance/liquid-staking-program/blob/4b5a6c60016ddefd1126755253f5269b557221bd/programs/marinade-finance/src/instructions/user/deposit_stake_account.rs#L185
https://github.com/marinade-finance/liquid-staking-program/pull/68

Security Audit - Marinade Liquid Staking

[ND-MARO1-L0-03] Malicious Stake Account Depositing May Exhaust
Stake List or Validator Lists

Severity Impact Affected Component Status

Low Partial DOS Stake List and Validator List Resolved

An attacker can reach the stake list account’s size limit by depositing many stake accounts. This is
recoverable via merging stake accounts, though depending on what the frequency of the cranker bot’s
merge operation is, it may, for a while, block reserve staking or other users wanting to deposit.

Main state account has around 18 thousand slots for stake accounts, so this would take nontrivial
amounts of funds.

Note that stake accounts are not mergeable if they are in a transient state; see issue [ND-MARO1-IN
-05].

This attack also works for the validator list if the auto-adding for new validators is allowed in the
DepositStakeAccount ix.

Resolution

Marinade implemented resizing of stake and validator lists in PR #68. In addition, auto-adding for new
validators has been removed due to [ND-MARO1-L0-02]. That resolves this issue as well.

20/38

https://github.com/marinade-finance/liquid-staking-program/pull/61

Security Audit - Marinade Liquid Staking

[ND-MARO1-L0-04] Duplication Flag Can Be Revived When Removing
Validator

Severity Impact Affected Component Status

Low Manager abuse potential RemoveValidator instruction Resolved

In the RemoveValidator instruction, the validator’s duplication flag is closed by setting its lamports to
zero. Accounts are only deleted if lamports are zero at the end of a transaction. This means that the
duplication flag can be revived in the same transaction by sending lamports to it.

Since this is a manager-only instruction, this means that the manager would have to be compromised /
misbehave. However, if this happens, they can remove a validator and, via this bug, prevent it from
ever being re-added (or properly removed) without upgrading the contract.

Relevant code: https://github.com/marinade-finance/liquid-staking-program/blob/4b5a6¢60016dd
efd1126755253f5269b557221bd/programs/marinade-finance/src/instructions/management/remov
e_validator.rs#L75

Resolution

The duplication flag is now assigned to the system program after its lamports are removed. This mimics
Anchor’s account-closing behavior, and is the correct fix here.

The relevant change is here.

21/38

https://github.com/marinade-finance/liquid-staking-program/blob/4b5a6c60016ddefd1126755253f5269b557221bd/programs/marinade-finance/src/instructions/management/remove_validator.rs#L75
https://github.com/marinade-finance/liquid-staking-program/blob/4b5a6c60016ddefd1126755253f5269b557221bd/programs/marinade-finance/src/instructions/management/remove_validator.rs#L75
https://github.com/marinade-finance/liquid-staking-program/blob/4b5a6c60016ddefd1126755253f5269b557221bd/programs/marinade-finance/src/instructions/management/remove_validator.rs#L75
https://github.com/marinade-finance/liquid-staking-program/commit/5e0bc70533e92d52f06e53f41b6a2e1fce07db92

Security Audit - Marinade Liquid Staking

[ND-MARO1-LO-05] Possibility to DOS Cranker’s StakeReserve Calls via
Frontrunning

Severity Impact Affected Component Status

Low Cranker DOS Cranker Bot Resolved

This is an issue in the Marinade-hosted cranker to whose private code we were given access. Please
note that we only did a cursory review of the bot’s code, and we do not consider it to be officially
in-scope.

In the bot’s two calls to StakeReserve, it first calls create_account on an account from a random keygen.
The call pattern is tx_execute(create_account_tx).and_then(marinade_call). Hence, if
the create account tx fails, the Marinade call will not happen.

A malicious attacker can frontrun the create_account transaction and send lamports to the account
to make it fail. They hence DOS the cranker call to Marinade.

Note that it wouldn’t be trivial to frontrun all cranker calls during an epoch, so the attack might be
annoying to execute in practice. Itis easy if the attacker is either the leader in that slot, or if the leader
provides a mempool (e.g. via jito).

Resolution

The accountis Anchor-inited in the StakeReserve instruction, meaning the cranker no longer needs to
initialize the account separately. Anchor’s init handles the case of a pre-funded account correctly.

The relevant change is here.

22/38

https://github.com/marinade-finance/liquid-staking-program/commit/cc9f22fb40cefc863ea8b140bf3d18484e9281ff

Security Audit - Marinade Liquid Staking

[ND-MARO1-IN-01] Attacker Can Use Up Extra Stake-Delta Runs Imme-
diately

Severity Impact Affected Component Status
Info DOS of additional stake-delta runs StakeReserve Acknowledged
instruction

Marinade has a concept of additional stake-delta runs, which are stake-delta operations after the first
stake-delta operation in an epoch. They are used to capture any last-minute deposits. Their number is
limited by a parameter stored in the state account. However, an attacker can repeatedly deposit small
amounts and call StakeReserve to use up extra stake runs.

Relevant code: https://github.com/marinade-finance/liquid-staking-program/blob/4b5a6c60016dd
efd1126755253f5269b557221bd/programs/marinade-finance/src/instructions/crank/stake_reserve.
rs#L165

Resolution

Marinade stated that extra stake-delta runs can be incremented by the bot-manager and that this does
not affect the protocol enough to justify the attack. We agree.

23/38

https://github.com/marinade-finance/liquid-staking-program/blob/4b5a6c60016ddefd1126755253f5269b557221bd/programs/marinade-finance/src/instructions/crank/stake_reserve.rs#L165
https://github.com/marinade-finance/liquid-staking-program/blob/4b5a6c60016ddefd1126755253f5269b557221bd/programs/marinade-finance/src/instructions/crank/stake_reserve.rs#L165
https://github.com/marinade-finance/liquid-staking-program/blob/4b5a6c60016ddefd1126755253f5269b557221bd/programs/marinade-finance/src/instructions/crank/stake_reserve.rs#L165

Security Audit - Marinade Liquid Staking

[ND-MARO1-IN-02] No Anchor-Init for Ticket Account

Severity Impact Affected Component Status

Info None OrderUnstake instruction Acknowledged

The OrderUnstake instruction creates the ticket account in a user-provided, pre-funded and program-
owned account. It would be nicer to use Anchor init for this.

If a bugis introduced that, for example, introduces the possiblity to leave program-owned accounts
with rent on them, this could be used to steal that rent, since the rent of the ticket account is given to
the user in a successful Claim instruction.

Resolution

Marinade acknowledged this but stated that they do not want to change the public interface.

24/38

Security Audit - Marinade Liquid Staking

[ND-MARO1-IN-03] Possibility to Initialize with Invalid Parameters

Severity Impact Affected Component Status

Info Creation of invalid State instance Initialize instruction Resolved

There are constraints which are enforced when changing parameters via ConfigMarinade. Some of
those are not enforced in the Initialize instruction.

Specifically, this is the case for the following parameters:

e min_stake
e slots_for_stake_delta

This could lead to a state that users might not expect.

Resolution

This finding does not affect the main state instance, as its parameters are inside the allowed boundaries.
It only affects newly created instances. Still, a fix was implemented in Pull #71, now checking the
parameters of newly created instances correctly.

25/38

https://github.com/marinade-finance/liquid-staking-program/pull/71

Security Audit - Marinade Liquid Staking

[ND-MARO1-IN-04] Withdraw Fees Round Down

Severity Impact Affected Component Status
Info Infeasible fee WithdrawStakeAccount and Acknowledged
circumvention DelayedUnstake instructions

In WithdrawStakeAccount and DelayedUnstake, the fee levied by the contract rounds down. If
min_withdraw is low, users can avoid the withdraw fees by withdrawing a small enough amount
that fees round down to zero (or, for higher amounts, users can pay somewhat smaller fees than
intended).

Transaction fees make this infeasible. For WithdrawStakeAccount, this should also be prevented by
Solana’s minimum stake requirement. It would still be “safer” to always have fees round up.

Resolution

Marinade chose to set the instance parameters to min_deposit to 0.001 and min_withdrawto 0.001,
which avoids zero-fee withdraws without code changes.

26/38

Security Audit - Marinade Liquid Staking

[ND-MARO1-IN-05] Stake System Can Contain Unmergeable Transient
Stake Accounts

Severity Impact Affected Component Status

Info Temporary DOS assuming certain conditions Stake account list Acknowledged

In rare cases when the global stake activation or deactivation limit is hit, it can happen that Marinade
has transient stake accounts in its stake system, i.e. stake accounts where delegation.stake does
not match the effective stake. Such accounts can also be deposited via the DepositStakeAccount

instruction.

The stake program will reject merging these accounts, so Marinade can be stuck with many stake
accounts per validator during one or more epochs which the cranker is unable to merge until they
are fully activated. An attacker could theoretically use this situation to fill up the stake account list by
depositing many transient stake accounts. It might also confuse the cranker.

We mention that these are very specific circumstances, and that the attack has low impact.

Resolution

Marinade acknowledged this but decided that due to the considerations in the last sentence above,
the additional complexity of a fix was not proportionate. They also stated that during the fixing of
[ND-MARO1-IN-08], new instructions for expanding and contracting the stake account list capacity
were added. Should the list be full, it can be expanded up to the maximum of 10MiB.

27/38

Security Audit - Marinade Liquid Staking

[ND-MARO1-IN-06] Possibility to Create Stake Accounts With Less Than
min_stake Stake

Severity Impact Affected Component Status

Info Limited Invariant Violation StakeReserve instruction Resolved

The calculation for the size of a new stake account in the StakeReserve instruction can result in a stake
smaller than the configured min_stake if total_stake_delta < min_stake.

Say min_stake is 10 SOL and there’s only one validator (for simplicity). Then an attacker can e.g. re-
peatedly Deposit 11 SOL and DelayedWithdraw 10 SOL, for a total stake delta of 1 SOL. Then they call
StakeReserve every time. In total, they create one stake account with only 1 SOL per stake delta run.
This violates the invariant that no Marinade stake account has less than min_stake stake.

Relevant code: https://github.com/marinade-finance/liquid-staking-program/blob/4b5a6¢60016dd
efd1126755253f5269b557221bd/programs/marinade-finance/src/instructions/crank/stake_reserve.
rs#L200

Resolution

Marinade fixed this in this pull request.

28/38

https://github.com/marinade-finance/liquid-staking-program/blob/4b5a6c60016ddefd1126755253f5269b557221bd/programs/marinade-finance/src/instructions/crank/stake_reserve.rs#L200
https://github.com/marinade-finance/liquid-staking-program/blob/4b5a6c60016ddefd1126755253f5269b557221bd/programs/marinade-finance/src/instructions/crank/stake_reserve.rs#L200
https://github.com/marinade-finance/liquid-staking-program/blob/4b5a6c60016ddefd1126755253f5269b557221bd/programs/marinade-finance/src/instructions/crank/stake_reserve.rs#L200
https://github.com/marinade-finance/liquid-staking-program/pull/62/files

Security Audit - Marinade Liquid Staking

[ND-MARO1-IN-07] Data Accounts and State Aren’t Checked to be Dis-
tinct at Initialization

Severity Impact Affected Component Status

Info Creation of unusable State instance Initialize instruction Resolved

In the initialize instruction, the stake list, validator list and state account aren’t checked to be pairwise
distinct.

If the initializer sets, for example, validator list and stake list to be equal, this results in an unusable
state since that account will first be initialized as stake list, then overwritten by validator list. Hence
that instance wouldn’t have a stake list at all. Setting them all equal means both list’s data accounts
get overwritten and you don’t have either.

Resolution

Marinade implemented a check here that all three accounts are pairwise distinct. Neodyme verified
the fix.

29/38

https://github.com/marinade-finance/liquid-staking-program/pull/65

Security Audit - Marinade Liquid Staking

[ND-MARO1-IN-08] Data Accounts Size Unchecked at Initialization

Severity Impact Affected Component Status

Info Creation of limited-usability State instance Initialize instruction ~ Resolved

In the initialize instruction, the size of the stake list account and the validator list account is unchecked
(besides checking that it fits the discriminator). So you could have a stake list account that could not
hold any stake records, or only a very limited number of stake records. Same for the validator list.

Resolution

Marinade added two new instructions for resizing the stake list (relevant commit) and validator list
account (relevant commit).

30/38

https://github.com/marinade-finance/liquid-staking-program/commit/006bf0ad3dc382b8d42a9c2a4f2f6c4fea267bd3
https://github.com/marinade-finance/liquid-staking-program/commit/265e0d7e555b15b36ccde2ab5ef32fa7ab68b58f

Security Audit - Marinade Liquid Staking

[ND-MAROG1-IN-09] Multiple State Accounts

Severity Impact Affected Component Status

Info Possible user confusion State Account Acknowledged

The state account does not have a hardcoded seed, hence multiple state accounts can exist. Anyone
can initialize a new state account. In its current state, no confusion between different state accounts
can occur in the contract itself, and the Marinade team states that they have checked that no confusion
can occur in the front end or the cranker bots.

An attacker could theoretically still create a new instance with a new state account, add their own
validators as the only options, and accrue user stakes by tricking them into depositing - which some
might be tricked into since it is the official Marinade program at the official address. They can then
pause the program to prevent destaking or withdrawal, and set their validator staking fees to 100%.

Resolution

Marinade acknowledged this but did not change the behavior. The relevant discussion points were
that the set of users that would be fooled by such an “attack” is very small, and more than one state
account is useful for testing and other purposes.

31/38

Security Audit - Marinade Liquid Staking

Discussion of Economic Attack Vectors

In this section, we discuss several economic attack patterns which arise from the functionality of the
program. None of them are currently of major concern.

Validator Commission Attack

One of the most obvious attack vectors for almost all SOL staking protocols on Solana is validators’
total control over their own staking commission. Validators can set their staking fee arbitrarily high
just before the end of an epoch, and it is still applied to the staking rewards of any funds delegated to
them for that epoch. Hence, if they set their fees to 100%, they will obtain all rewards of funds staked
to them.

Typical commissions for validators are between 1% and 10%. Hence with this attack, they would obtain
10-100 epochs worth of rewards in one epoch. Marinade states that they check for commission rugs
and blacklist offending validators. This attack should, therefore, be limited to one epoch.

Attacks Related to Rewards

We discuss two attacks that users could run to try to profit from rewards in a way that abuses the
contract’s functionality and why they’re currently prevented and not of concern, respectively.

User Deposits SOL and Immediately Withdraws Stake Account

If the stake account withdrawal fee is lower than one epoch of staking rewards, it becomes profitable
to deposit SOL and immediately withdraw a stake account. Hence, let’s look at what a sensible choice
would be.

Let r =ms_per_year [/ (ms_per_slot * slots_per_epoch) where slots_per_epoch =432,000
and ms_per_year ~31,536,000,000. Then the factor applied to a stake’s value to calculate its value
after one epoch of rewards is v/1 + APY, where APY denotes the current rewards APY.

Generously assuming maximum ms_per_slot at 800ms, and generously assuming maximum staking
rewards plus MEV rewards at 20% (note that apy also depends on slot times, so this is even more
generous than the delta to the current best apy), we have r = 91.25 and a one-epoch rewards factor
of 1.001978. Hence the rewards of one epoch are just under 0.2% in this extremely generous setting.

32/38

Security Audit - Marinade Liquid Staking

This suggests that the current on-chain setting of 0.2% stake account withdrawal fees is a sensible
choice.

This should obviously be monitored and adjusted in case of significant changes in slot times or stak-
ing/MEV APY.

User Deposits to Capitalize on Large Reward Delta Between Epochs

If a user knows that rewards will drop next epoch, or the reward is very high only in the current epoch for
whatever reason, and the user has undelegated SOL, they can capitalize on that using Marinade: They
call Deposit to deposit their SOL and obtain mSOL in return. Via mSOL appreciation, they immediately
profit from that epoch’s rewards. Without Marinade, they would have needed to wait for their stake to
activate and could only have gotten rewards from the next epoch onward.

However, this is disincentivized by the fact that all withdrawal methods have a fee attached. The reward
delta between epoch would have to be very large for this to become even remotely feasible.

Attacks Related to Slashing

Slashing has not been implemented on Solana and likely won’t be in the near future. However, when
orifitis, the following patterns may be of concern.

Attacker Shorts mSOL and Purposefully Causes Slashing

Avalidator can purposefully misbehave to cause slashing while shorting mSOL.

Say, e.g., they control validators that have a combined ~10% of all stake staked via Marinade. They
let all their validators severely misbehave, causing 20% of all their stake to be slashed. mSOL is now
worth approximately 2% less. Via leveraged shorting of mSOL, the attacker may capitalize on this quite
effectively. The potential immediate upside from this may outweigh the loss of the staking fees they
would have received over time.

This is an attack vector that any liquid staking protocol whose token is traded on the open market
would have once/if slashing is implemented. In Marinade’s case, it would be best to only have strongly
trusted validators in the curated set, ideally ones that also have significant non-Marinade stake, so
that their staking reward loss is larger in relation to the potential gain from the mSOL price delta.

33/38

Security Audit - Marinade Liquid Staking

Arbitraging Imminent Slashing

Aslashing event on a validator staked by Marinade wouldn’t be detected until the next call to the Update
instruction. If the slashing has not happened yet, or the update has not picked up on it, Withdraw
instructions use the old mSOL price.

This will result in an arbitrage opportunity, or in extreme cases perhaps a small bank run when a
slashing occurs, or once it becomes apparent a slashing may occur soon. Users that get their tickets
(or withdraw a stake account) before the update happens still get the old rate, leaving Marinade with
“bad debt,” which will result in even worse rates for remaining users.

34/38

Security Audit - Marinade Liquid Staking

About Neodyme

Security is difficult.

To understand and break complex things, you need a certain type of people. People who thrive in
complexity, who love to play around with code, and who don’t stop exploring until they fully understand
every aspect of it. That’s us.

Our team never outsources audits. Having found over 80 High or Critical bugs in Solana’s core code
itself, we believe that Neodyme hosts the most qualified auditors for Solana programs. We’ve also
found and disclosed critical vulnerabilities in many of Solana’s top projects and have responsibly
disclosed issues that could have resulted in the theft of over $10B in TVL on the Solana blockchain.

All of our team members have a background in competitive hacking. During such hacking competitions,
called CTFs, we competed and collaborated while finding vulnerabilities, breaking encryption, reverse
engineering complicated algorithms, and much more. Through the years, many of our team members
have won national and international hacking competitions, and keep ranking highly among some of the
hardest CTF events worldwide. In 2020, some of our members started experimenting with validators
and became active members in the early Solana community. With the prospect of an interesting
technical challenge and bug bounties, they quickly encouraged others from our CTF team to look for
security issues in Solana. The result was so successful that after reporting several bugs, in 2021, the
Solana Foundation contracted us for source code auditing. As a result, Neodyme was born.

35/38

Security Audit - Marinade Liquid Staking

Methodology

Neodyme prides itself on not being a checklist auditor. We adapt our approach to each audit, investing
considerable time into understanding the program upfront and exploring its expected behavior, edge
cases, invariants, and ways in which the latter could be violated. We use our uniquely deep knowledge
of Solana internals, and our years-long experience in auditing Solana programs to even find bugs that
others miss. We often extend our audit to cover off-chain components in order to see how users could
be tricked or the contract affected by bugs in those components.

Nonetheless, we also have a list of common vulnerability classes, which we always exhaustively look
for. We provide a sample of this list below.

+ Rule out common classes of Solana contract vulnerabilities, such as:

- Missing ownership checks

- Missing signer checks

- Signed invocation of unverified programs
- Solana account confusions

- Redeployment with cross-instance confusion
- Missing freeze authority checks

- Insufficient SPL account verification

- Missing rent exemption assertion

- Casting truncation

- Arithmetic over- or underflows

- Numerical precision errors

« Check for unsafe design decisions that might lead to vulnerabilities being introduced in the
future

+ Check for any other, as-of-yet unknown classes of vulnerabilities arising from the structure of
the Solana blockchain

+ Ensure that the contract logic correctly implements the project specifications

« Examine the code in detail for contract-specific low-level vulnerabilities

+ Rule out denial of service attacks

+ Rule out economic attacks

+ Check forinstructions that allow front-running or sandwiching attacks

+ Check for rug pull mechanisms or hidden backdoors

36/38

Security Audit - Marinade Liquid Staking

Vulnerability Severity Rating

Critical Vulnerabilities that will likely cause loss of funds. An attacker can trigger them with little or
no preparation, or they are expected to happen accidentally. Effects are difficult to undo after
they are detected.

High Bugs that can be used to set up loss of funds in a more limited capacity, or to render the contract
unusable.

Medium Bugsthat do not cause direct loss of funds but that may lead to other exploitable mechanisms,
or that could be exploited to render the contract partially unusable.

Low Bugs that do not have a significant immediate impact and could be fixed easily after detection.

Info Bugs or inconsistencies that have little to no security impact.

37/38

Security Audit - Marinade Liquid Staking

Neodyme AG

Dirnismaning 55

Halle 13

85748 Garching

E-Mail: contact@neodyme.io

https://neodyme.io

38/38

https://neodyme.io

	Executive Summary
	Introduction
	Summary of Findings

	Scope
	Project Overview
	Functionality
	On-Chain Data and Accounts
	Instructions
	Authority Structure and Off-Chain Components

	Findings
	[ND-MAR01-LO-01] Depositor May Gain 1 Extra mSOL-Lamport in Some Cases
	[ND-MAR01-LO-02] Auto-Adding of Validators in Stake Account Deposit is DOSable
	[ND-MAR01-LO-03] Malicious Stake Account Depositing May Exhaust Stake List or Validator Lists
	[ND-MAR01-LO-04] Duplication Flag Can Be Revived When Removing Validator
	[ND-MAR01-LO-05] Possibility to DOS Cranker's StakeReserve Calls via Frontrunning
	[ND-MAR01-IN-01] Attacker Can Use Up Extra Stake-Delta Runs Immediately
	[ND-MAR01-IN-02] No Anchor-Init for Ticket Account
	[ND-MAR01-IN-03] Possibility to Initialize with Invalid Parameters
	[ND-MAR01-IN-04] Withdraw Fees Round Down
	[ND-MAR01-IN-05] Stake System Can Contain Unmergeable Transient Stake Accounts
	[ND-MAR01-IN-06] Possibility to Create Stake Accounts With Less Than min_stake Stake
	[ND-MAR01-IN-07] Data Accounts and State Aren't Checked to be Distinct at Initialization
	[ND-MAR01-IN-08] Data Accounts Size Unchecked at Initialization
	[ND-MAR01-IN-09] Multiple State Accounts

	Discussion of Economic Attack Vectors
	Validator Commission Attack
	Attacks Related to Rewards
	Attacks Related to Slashing

	About Neodyme
	Methodology
	Vulnerability Severity Rating

