

Security Assessment Report

Marinade Finance Liquid Staking
October 25, 2023

sec3 Report

1

Summary

The sec3 team (formerly Soteria) was engaged to do a thorough security analysis of the

Marinade Finance Liquid Staking Program at https://github.com/marinade-finance/liquid-

staking-program. The initial audit was done on the source code of the following version

• Contract “marinade-finance”:

o commit 4b5a6c60016ddefd1126755253f5269b557221bd

The review revealed 13 issues. The team responded with a second version for the post-audit

review to see if the reported issues were resolved. The audit was concluded on commit

1bd5133d3198c0af05a0952d1ca8cd0d1e19fad6, which is the version with all fixes applied to

be deployed.

https://github.com/marinade-finance/liquid-staking-program
https://github.com/marinade-finance/liquid-staking-program

sec3 Report

2

Table of Contents

Result Overview .. 3

Findings in Detail .. 4

[L-1] split_stake_account rent not returned in some cases .. 4

[L-2] min_stake and slots_for_stake_delta validation in initialization 6

[L-3] Add validator without approval ... 8

[L-4] duplication_flag account is not properly closed ... 9

[L-5] Small rounding error in deposit .. 10

[I-1] Conflicts between code and comments in deposit_stake_account 11

[I-2] Redundant validator update in stake_reserve ... 12

[I-3] Inconsistent comments/implementations in remove_liquidity 13

[I-4] MIN_UPDATE_WINDOW may be shorter than expected ... 14

[I-5] Execution not terminated when lp_mint.supply > liq_pool.lp_supply 15

[I-6] The global extra_stake_delta_runs can be maliciously consumed 17

[I-7] stake_target may be less than min_stake in stake_reserve ... 18

[I-8] delayed_unstake_fee and withdraw_stake_account_fee checks 19

Appendix: Methodology and Scope of Work .. 21

sec3 Report

3

Result Overview

MARINADE FINANCE LIQUID STAKING PROGRAM

Issue Impact Status

[L-1] split_stake_account rent not returned in some cases Low Resolved

[L-2] min_stake and slots_for_stake_delta validation in initialization Low Resolved

[L-3] Add validator without approval Low Resolved

[L-4] duplication_flag account is not properly closed Low Resolved

[L-5] Small rounding error in deposit Low Resolved

[I-1] Conflicts between code and comments in deposit_stake_account Info Resolved

[I-2] Redundant validator update in stake_reserve Info Resolved

[I-3] Inconsistent comments/implementations in remove_liquidity Info Resolved

[I-4] MIN_UPDATE_WINDOW may be shorter than expected Info Resolved

[I-5] Execution not terminated when lp_mint.supply > liq_pool.lp_supply Info Resolved

[I-6] The global extra_stake_delta_runs can be maliciously consumed Info Resolved

[I-7] stake_target may be less than min_stake in stake_reserve Info Resolved

[I-8] delayed_unstake_fee and withdraw_stake_account_fee checks Info Resolved

sec3 Report

4

Findings in Detail

[L-1] split_stake_account rent not returned in some cases

In some crank instructions, a newly initialized stake account, split_stake_account, is used

during the operation.

However, in some cases where this account is not used, the rent fee is not returned to the

bot or user calling this crank. Malicious users might be able to construct specific scenarios

to trigger the bots and consume the bot's balance, potentially enabling a DoS attack.

/* programs/marinade-finance/src/instructions/crank/deactivate_stake.rs */
063 | #[account(
064 | init,
065 | payer = split_stake_rent_payer,
066 | space = std::mem::size_of::<StakeState>(),
067 | owner = stake::program::ID,
068 |)]
069 | pub split_stake_account: Account<'info, StakeAccount>,

/* programs/marinade-finance/src/instructions/crank/deactivate_stake.rs */
150 | // compute how much we should unstake from this validator
151 | let validator_active_balance = validator.active_balance; // record for event
152 | if validator_active_balance <= validator_stake_target {
153 | msg!(
154 | "Validator {} has already reached unstake target {}",
155 | validator.validator_account,
156 | validator_stake_target
157 |);
158 | return Ok(()); // Not an error. Don't fail other instructions in tx
159 | }

/* programs/marinade-finance/src/instructions/crank/deactivate_stake.rs */
216 | // we must perform partial unstake
217 | // Update validator.last_stake_delta_epoch for split-stakes only because
 // probably we need to unstake multiple whole stakes for the same validator
218 | if validator.last_stake_delta_epoch == self.clock.epoch {
219 | // note: we don't consume self.state.extra_stake_delta_runs
220 | // for unstake operations. Once delta stake is initiated

sec3 Report

5

221 | // only one unstake per validator is allowed (this maximizes mSOL price increase)
222 | msg!(
223 | "Double delta stake command for validator {} in epoch {}",
224 | validator.validator_account,
225 | self.clock.epoch
226 |);
227 | return Ok(()); // Not an error. Don't fail other instructions in tx
228 | }

/* programs/marinade-finance/src/instructions/management/partial_unstake.rs */
140 | // if validator is already on-target (or the split will be lower than min_stake),
 // exit now
141 | if validator.active_balance <= validator_stake_target
 + self.state.stake_system.min_stake {
142 | msg!(
143 | "Current validator {} stake {} is <= target {} +min_stake",
144 | validator.validator_account,
145 | validator.active_balance,
146 | validator_stake_target
147 |);
148 | return Ok(()); // Not an error. Don't fail other instructions in tx
149 | }

Resolution

The issue was fixed by commit 1bd5133.

sec3 Report

6

[L-2] min_stake and slots_for_stake_delta validation in initialization

In the initialize instruction, values for min_stake and slots_for_stake_delta are assigned to

the state account without undergoing any preliminary validation.

/* programs/marinade-finance/src/instructions/admin/initialize.rs */
112 | pub fn process(
113 | &mut self,
114 | InitializeData {
117 | min_stake,
122 | slots_for_stake_delta,
124 | }: InitializeData,
125 | reserve_pda_bump: u8,
126 |) -> Result<()> {
135 | self.state.set_inner(State {
144 | stake_system: StakeSystem::new(
145 | self.state_address(),
146 | *self.stake_list.key,
147 | &mut self.stake_list.data.as_ref().borrow_mut(),
148 | slots_for_stake_delta,
149 | min_stake,
150 | 0,
151 | additional_stake_record_space,
152 |)?,
175 | });

In contrast, the config_marinade instruction incorporates a range validation procedure for

these two numerical parameters.

/* programs/marinade-finance/src/instructions/admin/config_marinade.rs */
071 | let slots_for_stake_delta_change =
072 | if let Some(slots_for_stake_delta) = slots_for_stake_delta {
073 | require_gte!(
074 | slots_for_stake_delta,
075 | StakeSystem::MIN_UPDATE_WINDOW,
076 | MarinadeError::UpdateWindowIsTooLow
077 |);
078 | let old = self.state.stake_system.slots_for_stake_delta;
079 | self.state.stake_system.slots_for_stake_delta = slots_for_stake_delta;
080 | Some(U64ValueChange {
081 | old,

sec3 Report

7

082 | new: slots_for_stake_delta,
083 | })
084 | } else {
085 | None
086 | };
087 |
088 | let min_stake_change = if let Some(min_stake) = min_stake {
089 | require_gte!(
090 | min_stake,
091 | 5 * self.state.rent_exempt_for_token_acc,
092 | MarinadeError::MinStakeIsTooLow
093 |);
094 | let old = self.state.stake_system.min_stake;
095 | self.state.stake_system.min_stake = min_stake;
096 | Some(U64ValueChange {
097 | old,
098 | new: min_stake,
099 | })
100 | } else {
101 | None
102 | };

Resolution

The issue was fixed by commit 00bee19.

sec3 Report

8

[L-3] Add validator without approval

/* programs/marinade-finance/src/instructions/user/deposit_stake_account.rs */
022 | pub struct DepositStakeAccount<'info> {
050 | pub stake_authority: Signer<'info>,
054 | #[account(
055 | mut,
056 | owner = system_program::ID
057 |)]
058 | pub rent_payer: Signer<'info>,
085 | }

/* programs/marinade-finance/src/instructions/user/deposit_stake_account.rs */
090 | pub fn process(&mut self, validator_index: u32) -> Result<()> {
149 | let validator_active_balance =
150 | if validator_index == self.state.validator_system.validator_count() {
151 | if self.state.validator_system.auto_add_validator_enabled == 0 {
152 | return err!(MarinadeError::AutoAddValidatorIsNotEnabled);
153 | }

In deposit_stake_account instruction, it's possible to add new validators repeatedly. Once

the list size is fixed by validator_list.data, malicious users may keep adding validators with-

out securing the approvals before validator_system.manager_authority adding validators,

leading to DoS issues.

By contracts, the add_validator instruction requires the signature from the validator_sys-

tem.manager_authority.

Resolution

The issue was fixed by commits 265e0d7 and 4606d9a.

sec3 Report

9

[L-4] duplication_flag account is not properly closed

The owner of the duplication_flag account should be assigned to the system program.

/* programs/marinade-finance/src/instructions/management/remove_validator.rs */
072 | // record for event, then remove all flag-account lamports to remove flag
073 | let operational_sol_balance = self.operational_sol_account.lamports();
074 | let rent_return = self.duplication_flag.lamports();
075 | **self.duplication_flag.try_borrow_mut_lamports()? = 0;
076 | **self.operational_sol_account.try_borrow_mut_lamports()? += rent_return;
077 |
078 | emit!(RemoveValidatorEvent {
079 | state: self.state.key(),
080 | validator: validator_vote,
081 | index,
082 | operational_sol_balance,
083 | });

Resolution

The issue was fixed by commit 5e0bc70.

sec3 Report

10

[L-5] Small rounding error in deposit

/* programs/marinade-finance/src/instructions/user/deposit.rs */
120 | let user_msol_buy_order = self.state.calc_msol_from_lamports(lamports)?;
121 | msg!("--- user_m_sol_buy_order {}", user_msol_buy_order);
122 |
128 | let msol_leg_balance = self.liq_pool_msol_leg.amount;
129 | let msol_swapped: u64 = user_msol_buy_order.min(msol_leg_balance);
130 | msg!("--- swap_m_sol_max {}", msol_swapped);
131 |
132 | //if we can sell from the LiqPool
133 | let sol_swapped = if msol_swapped > 0 {
134 | // how much lamports go into the LiqPool?
135 | let sol_swapped = if user_msol_buy_order == msol_swapped {
136 | //we are fulfilling 100% the user order
137 | lamports //100% of the user deposit
138 | } else {
141 | self.state.msol_to_sol(msol_swapped)?
142 | };

/* programs/marinade-finance/src/instructions/user/deposit.rs */
181 | let sol_deposited = lamports - sol_swapped;
182 | // check if we have more lamports from the user
183 | let msol_minted = if sol_deposited > 0 {
184 | self.state.check_staking_cap(sol_deposited)?;
190 | let msol_to_mint = self.state.calc_msol_from_lamports(sol_deposited)?;
191 | msg!("--- msol_to_mint {}", msol_to_mint);

sol_swapped at line 141 may be smaller than the actual value.

As a result, msol_to_mint minted to the user may be inaccurate, a proper value should

be user_msol_buy_order - msol_swapped to reduce error.

Resolution

The issue was fixed by commit df4e1c4.

sec3 Report

11

[I-1] Conflicts between code and comments in deposit_stake_account

/* programs/marinade-finance/src/instructions/user/deposit_stake_account.rs */
116 | // require the stake is active since current_epoch + WAIT_EPOCHS
117 | require_gte!(
118 | self.clock.epoch,
119 | delegation.activation_epoch + Self::WAIT_EPOCHS,
120 | MarinadeError::DepositingNotActivatedStake
121 |);

The comment on line 116 and the actual code implementation do not align. It appears

the current_epoch in the comments should be activation_epoch.

Resolution

The issue was fixed by commit 4fb77b5.

sec3 Report

12

[I-2] Redundant validator update in stake_reserve

/* programs/marinade-finance/src/instructions/crank/stake_reserve.rs */
154 | if validator.last_stake_delta_epoch == self.clock.epoch {
155 | // check if we have some extra stake runs allowed
156 | if self.state.stake_system.extra_stake_delta_runs == 0 {
157 | msg!(
158 | "Double delta stake command for validator {} in epoch {}",
159 | validator.validator_account,
160 | self.clock.epoch
161 |);
162 | return Ok(()); // Not an error. Don't fail other instructions in tx
163 | } else {
165 | self.state.stake_system.extra_stake_delta_runs -= 1;
166 | }
167 | } else {
168 | // first stake in this epoch
169 | validator.last_stake_delta_epoch = self.clock.epoch;
170 | }

/* programs/marinade-finance/src/instructions/crank/stake_reserve.rs */
277 | validator.active_balance += stake_target;
278 | validator.last_stake_delta_epoch = self.clock.epoch;
279 | // Any stake-delta activity must activate stake delta mode
280 | self.state.stake_system.last_stake_delta_epoch = self.clock.epoch;
281 | self.state.validator_system.set(
282 | &mut self.validator_list.data.as_ref().borrow_mut(),
283 | validator_index,
284 | validator,
285 |)?;

In the stake_reserve instruction, the validator.last_stake_delta_epoch is updated at line 278

after the operation. However, the relevant operation has already been performed in the con-

ditional statement from lines 154 to 170.

Resolution

The issue was fixed by commit 6ff86ad.

sec3 Report

13

[I-3] Inconsistent comments/implementations in remove_liquidity

No error was returned in the true branch.

/* programs/marinade-finance/src/instructions/liq_pool/remove_liquidity.rs */
083 | if lp_mint_supply > self.state.liq_pool.lp_supply {
084 | msg!("Someone minted lp tokens without our permission or bug found");
085 | // return an error
086 | } else {
087 | // maybe burn
088 | self.state.liq_pool.lp_supply = lp_mint_supply;
089 | }

Resolution

The issue was fixed by commit 448dd28.

sec3 Report

14

[I-4] MIN_UPDATE_WINDOW may be shorter than expected

/* programs/marinade-finance/src/state/stake_system.rs */
053 | impl StakeSystem {
054 | pub const STAKE_WITHDRAW_SEED: &'static [u8] = b"withdraw";
055 | pub const STAKE_DEPOSIT_SEED: &'static [u8] = b"deposit";
056 | pub const DISCRIMINATOR: &'static [u8; 8] = b"staker__";
057 | pub const MIN_UPDATE_WINDOW: u64 = 3_000; //min value is 3_000 => half an hour

In the current definition, MIN_UPDATE_WINDOW is set to 3000 slots, and it is mentioned in

the comments as being equivalent to half an hour.

However, according to data from Solana Explorer, the current Slot time is approximately

420ms, thus the time corresponding to 3000 slots is about 21 minutes, which might be

shorter than the anticipated time.

Resolution

The issue was fixed by commit 15d839c.

sec3 Report

15

[I-5] Execution not terminated when lp_mint.supply > liq_pool.lp_supply

• lp_mint.supply vs. state.liq_pool.lp_supply

In the remove_liquidity instruction, if lp_mint.supply > liq_pool.lp_supply which means

someone minted lp tokens without permission or bug found, only a log message is emitted

and the execution is not terminated though stated in the comment.

/* programs/marinade-finance/src/instructions/liq_pool/remove_liquidity.rs */
067 | impl<'info> RemoveLiquidity<'info> {
068 | pub fn process(&mut self, tokens: u64) -> Result<()> {
081 | // Update virtual lp_supply by real one
082 | let lp_mint_supply = self.lp_mint.supply;
083 | if lp_mint_supply > self.state.liq_pool.lp_supply {
084 | msg!("Someone minted lp tokens without our permission or bug found");
085 | // return an error
086 | } else {
087 | // maybe burn
088 | self.state.liq_pool.lp_supply = lp_mint_supply;
089 | }

In contrast, the add_liquidity instruction will raise an error in this scenario.

/* programs/marinade-finance/src/instructions/liq_pool/add_liquidity.rs */
063 | impl<'info> AddLiquidity<'info> {
064 | // fn add_liquidity()
065 | pub fn process(&mut self, lamports: u64) -> Result<()> {
085 | // if self.state.liq_pool.lp_supply < self.lp_mint.supply, Someone minted
 // lp tokens without our permission or bug found
086 | require_lte!(
087 | self.lp_mint.supply,
088 | self.state.liq_pool.lp_supply,
089 | MarinadeError::UnregisteredLPMinted
090 |);
092 | self.state.liq_pool.lp_supply = self.lp_mint.supply;

Consider porting the require_lte! check in add_liquidity to remove_liquidity.

sec3 Report

16

• msol_mint.supply vs. state.msol_supply

/* programs/marinade-finance/src/instructions/user/deposit.rs */
109 | // impossible to happen check outside bug (msol mint auth is a PDA)
110 | require_lte!(
111 | self.msol_mint.supply,
112 | self.state.msol_supply,
113 | MarinadeError::UnregisteredMsolMinted
114 |);

Similarly, deposit() requires msol_mint.supply is less than or equal to state.msol_sup-

ply (msol mint accounting maintained by the program) so that no token has been minted

outside of the program. However, withdraw() doesn't check this so only deposit() will be

blocked in such scenarios.

Resolution

The team responded that this was to avoid blocking withdrawing funds. Since this is a 0%

probability situation, no action is needed.

sec3 Report

17

[I-6] The global extra_stake_delta_runs can be maliciously consumed

/* programs/marinade-finance/src/instructions/crank/stake_reserve.rs */
154 | if validator.last_stake_delta_epoch == self.clock.epoch {
155 | // check if we have some extra stake runs allowed
156 | if self.state.stake_system.extra_stake_delta_runs == 0 {
157 | msg!(
158 | "Double delta stake command for validator {} in epoch {}",
159 | validator.validator_account,
160 | self.clock.epoch
161 |);
162 | return Ok(()); // Not an error. Don't fail other instructions in tx
163 | } else {
164 | // some extra runs allowed. Use one
165 | self.state.stake_system.extra_stake_delta_runs -= 1;
166 | }
167 | } else {
168 | // first stake in this epoch
169 | validator.last_stake_delta_epoch = self.clock.epoch;
170 | }

In stake_reserve, Marinade ensures that each validator can only execute stake_reserve once

per epoch by recording the last_stake_delta_epoch field for each validator. However, this re-

striction is not absolute. An admin can allow two or even multiple stake-delta operations in

a single epoch by setting the extra_stake_delta_runs field in the stake system.

Since stake_reserve itself is a permissionless crank, a malicious user might repeatedly in-

voke this instruction to consume all of the extra_stake_delta_runs, although this might not

bring any benefits to them.

Resolution

The team acknowledged the finding. However, considering that this might not bring any ben-

efits and might not cause significant harm to Marinade, it does not warrant a change.

sec3 Report

18

[I-7] stake_target may be less than min_stake in stake_reserve

/* programs/marinade-finance/src/instructions/crank/stake_reserve.rs */
195 | // compute stake_target
196 | // stake_target = target_validator_balance - validator.balance, at least
 // self.state.min_stake and at most delta_stake
197 | let stake_target = validator_stake_target
198 | .saturating_sub(validator_active_balance)
199 | .max(self.state.stake_system.min_stake)
200 | .min(total_stake_delta);
201 |
202 | // if what's left after this stake is < state.min_stake, take all the remainder
203 | let stake_target = if total_stake_delta - stake_target
 < self.state.stake_system.min_stake {
204 | total_stake_delta
205 | } else {
206 | stake_target
207 | };

In the stake_reserve instruction, the calculated stake_target should be ensured to be at

least min_stake and at most total_stake_delta. However, the current implementation cannot

guarantee this: in the extreme case where total_stake_delta is less than min_stake, the final

value of stake_target will be less than min_stake.

Resolution

This issue has been fixed by commit 9695c0d.

sec3 Report

19

[I-8] delayed_unstake_fee and withdraw_stake_account_fee checks

According to the comments, delayed_unstake_fee and withdraw_stake_account_fee should

not be zero.

/* programs/marinade-finance/src/state/mod.rs */
026 | pub struct State {
075 | // delayed unstake account fee
076 | // to avoid economic attacks this value should not be zero
077 | // (this is required because tickets are ready at the end of the epoch)
078 | // preferred value is one epoch rewards
079 | pub delayed_unstake_fee: FeeCents,
081 | // withdraw stake account fee
082 | // to avoid economic attacks this value should not be zero
083 | // (this is required because stake accounts are delivered immediately)
084 | // preferred value is one epoch rewards
085 | pub withdraw_stake_account_fee: FeeCents,
086 | pub withdraw_stake_account_enabled: bool,

/* programs/marinade-finance/src/instructions/delayed_unstake/order_unstake.rs */
059 | // apply delay_unstake_fee to avoid economical attacks
060 | // delay_unstake_fee must be >= one epoch staking rewards
061 | let delay_unstake_fee_lamports = self
062 | .state
063 | .delayed_unstake_fee
064 | .apply(sol_value_of_msol_burned);

/* programs/marinade-finance/src/instructions/user/withdraw_stake_account.rs */
179 | // apply withdraw_stake_account_fee to avoid economical attacks
180 | // withdraw_stake_account_fee must be >= one epoch staking rewards
181 | let withdraw_stake_account_fee_lamports =
182 | self.state.withdraw_stake_account_fee.apply(sol_value);

However, they are initialized to be zero.

/* programs/marinade-finance/src/instructions/admin/initialize.rs */
172 | delayed_unstake_fee: FeeCents::from_bp_cents(0),
173 | withdraw_stake_account_fee: FeeCents::from_bp_cents(0),
174 | withdraw_stake_account_enabled: false,

Later, when setting them to different values, there are only upper bound checks.

sec3 Report

20

/* programs/marinade-finance/src/instructions/admin/config_marinade.rs */
181 | let delayed_unstake_fee_change = if let Some(delayed_unstake_fee)
 = delayed_unstake_fee {
182 | require_lte!(
183 | delayed_unstake_fee,
184 | State::MAX_DELAYED_UNSTAKE_FEE,
185 | MarinadeError::DelayedUnstakeFeeIsTooHigh
186 |);
187 | let old = self.state.delayed_unstake_fee;
188 | self.state.delayed_unstake_fee = delayed_unstake_fee;
189 | Some(FeeCentsValueChange {
190 | old,
191 | new: delayed_unstake_fee,
192 | })
193 | } else {
194 | None
195 | };

Resolution

The team responded that this is expected. The comment says, "To avoid economic attacks, it

should be > 0". But such attacks are allowed by default. No action is needed.

sec3 Report

21

Appendix: Methodology and Scope of Work

The sec3 (formerly Soteria) audit team, which consists of Computer Science professors and

industrial researchers with extensive experience in Solana smart contract security, program

analysis, testing, and formal verification, performed a comprehensive manual code review,

software static analysis, and penetration testing.

Assisted by the sec3 Scanner developed in-house, the audit team particularly focused on the

following work items:

• Check common security issues.
o Missing ownership checks
o Missing signer checks
o Signed invocation of unverified programs
o Solana account confusions
o Arithmetic over- or underflows
o Numerical precision errors
o Loss of precision in calculation
o Insufficient SPL-Token account verification
o Missing rent exemption assertion
o Casting truncation
o Did not follow security best practices
o Outdated dependencies
o Redundant code
o Unsafe Rust code

• Check program logic implementation against available design specifications.
• Check poor coding practices and unsafe behavior.
• The soundness of the economics design and algorithm is out of the scope of this work

DISCLAIMER

The instance report ("Report") was prepared pursuant to an agreement between

Coderrect Inc. d/b/a sec3 (the "Company") and Marinade Finance (the "Client"). This

Report solely includes the results of a technical assessment of a specific build and/or

version of the Client's code specified in the Report ("Assessed Code") by the Company.

The Report's sole purpose is to provide the Client with the results of the technical

assessment of the Assessed Code. The Report does not apply to any other version

and/or build of the Assessed Code. Regardless of the contents of the Report, the Report

does not (and should not be interpreted to) provide any warranty, representation, or

covenant that the Assessed Code: (i) is error and/or bug-free, (ii) has no security

vulnerabilities, and/or (iii) does not infringe any third-party rights. Moreover, the

Report is not, and should not be considered, an endorsement by the Company of the

Assessed Code and/or of the Client. Finally, the Report should not be considered

investment advice or a recommendation to invest in the Assessed Code and/or the

Client.

This Report is considered null and void if the Report (or any portion thereof) is altered

in any manner.

ABOUT

Founded by leading academics in the field of software security and senior industrial

veterans, sec3 (formerly Soteria) is a leading blockchain security company that

currently focuses on Solana programs. We are also building sophisticated security

tools incorporating static analysis, penetration testing, and formal verification.

At sec3, we identify and eliminate security vulnerabilities through the most rigorous

process and aided by the most advanced analysis tools.

For more information, check out our website and follow us on twitter.

https://sec3.dev/
https://twitter.com/Sec3dev

	Result Overview
	Findings in Detail
	[L-1] split_stake_account rent not returned in some cases
	[L-2] min_stake and slots_for_stake_delta validation in initialization
	[L-3] Add validator without approval
	[L-4] duplication_flag account is not properly closed
	[L-5] Small rounding error in deposit
	[I-1] Conflicts between code and comments in deposit_stake_account
	[I-2] Redundant validator update in stake_reserve
	[I-3] Inconsistent comments/implementations in remove_liquidity
	[I-4] MIN_UPDATE_WINDOW may be shorter than expected
	[I-5] Execution not terminated when lp_mint.supply > liq_pool.lp_supply
	[I-6] The global extra_stake_delta_runs can be maliciously consumed
	[I-7] stake_target may be less than min_stake in stake_reserve
	[I-8] delayed_unstake_fee and withdraw_stake_account_fee checks
	Appendix: Methodology and Scope of Work

